Quantum Optics VI Quantization of Electromagnetic Field
fengxiaot Lv4

Cavity quantum electrodynamics (cavity QED) is the study of the interaction between light confined in a reflective cavity and atoms or other particles, under conditions where the quantum nature of photons is significant.

Quantization of Scalar Field

For a free scalar field, the Lagrangian is

L=12(μϕ)μϕ12m2ϕ2\mathcal{L}=\frac{1}{2}\left(\partial^\mu \phi\right) \partial_\mu \phi-\frac{1}{2} m^2 \phi^2

The conjugate momentum π\pi is defined by

π(x)=L(0ϕ)=0ϕ(x)\pi(x)=\frac{\partial \mathcal{L}}{\partial\left(\partial_0 \phi\right)}=\partial_0 \phi(x)

Stipulate equal time commutation relations

[ϕ(x,t),π(y,t)]=iδ(3)(xy),[ϕ(x,t),ϕ(y,t)]=0,[π(x,t),π(y,t)]=0[\phi(\boldsymbol{x}, t), \pi(\boldsymbol{y}, t)]=\mathrm{i} \delta^{(3)}(\boldsymbol{x}-\boldsymbol{y}), \quad[\phi(\boldsymbol{x}, t), \phi(\boldsymbol{y}, t)]=0, \quad[\pi(\boldsymbol{x}, t), \pi(\boldsymbol{y}, t)]=0

by which we quantize the coefficients ap,apa_\boldsymbol{p}, a_\boldsymbol{p}^\dagger in the plane-wave expansion of the field into creation and annihilation operators

ϕ(x,t)=d3p(2π)312Ep(apeipx+apeipx)\phi(\boldsymbol{x}, t)=\int \frac{\mathrm{d}^3 p}{(2 \pi)^3} \frac{1}{\sqrt{2 E_{\boldsymbol{p}}}}\left(a_{\boldsymbol{p}} \mathrm{e}^{-\mathrm{i} p \cdot x}+a_{\boldsymbol{p}}^{\dagger} \mathrm{e}^{\mathrm{i} p \cdot x}\right)

where px=p0tpxp \cdot x=p^0 t-\boldsymbol{p} \cdot \boldsymbol{x} , p0>0p^0>0 , with momentum on shell

p0=Epp2+m2p^0=E_{\boldsymbol{p}} \equiv \sqrt{|\boldsymbol{p}|^2+m^2}

And it is easy to check ap,apa_\boldsymbol{p}, a_\boldsymbol{p}^\dagger defined in this way satisfy

[ap,aq]=(2π)3δ(3)(pq),[ap,aq]=[ap,aq]=0\left[a_{\boldsymbol{p}}, a_{\boldsymbol{q}}^{\dagger}\right]=(2 \pi)^3 \delta^{(3)}(\boldsymbol{p}-\boldsymbol{q}), \quad\left[a_{\boldsymbol{p}}, a_{\boldsymbol{q}}\right]=\left[a_{\boldsymbol{p}}^{\dagger}, a_{\boldsymbol{q}}^{\dagger}\right]=0

It is important to emphasize that, the quantization is performed in the Heisenberg picture. What we have now is actually

ϕH(x,t)=d3p(2π)312Ep(apeipx+apeipx)\phi^\mathrm{H}(\boldsymbol{x}, t)=\int \frac{\mathrm{d}^3 p}{(2 \pi)^3} \frac{1}{\sqrt{2 E_{\boldsymbol{p}}}}\left(a_{\boldsymbol{p}} \mathrm{e}^{-\mathrm{i} p \cdot x}+a_{\boldsymbol{p}}^{\dagger} \mathrm{e}^{\mathrm{i} p \cdot x}\right)

Therefore, In Heisenberg picture, the field operator is time dependent. Moreover, ap,apa_\boldsymbol{p}, a_\boldsymbol{p}^\dagger are actually operators in Schrodinger picture. The real creation and annihilation operators in Heisenberg picture are

apH(t)=eiHtapeiHt=eiEptap,apH(t)=eiEptapa_\boldsymbol{p}^\mathrm{H}(t) = \mathrm{e}^{\mathrm{i}Ht}a_\boldsymbol{p}\mathrm{e}^{-\mathrm{i}Ht} = \mathrm{e}^{-\mathrm{i} E_\boldsymbol{p} t} a_\boldsymbol{p}, \quad a_\boldsymbol{p}^{\dagger\mathrm{H}}(t) = \mathrm{e}^{\mathrm{i} E_\boldsymbol{p} t} a^\dagger_\boldsymbol{p}

If switching to the Schrodinger picture, one will find the field operator is time independent

ϕS(x,t)=d3p(2π)312Ep(apeipx+apeipx)\phi^\mathrm{S}(\boldsymbol{x}, t)=\int \frac{\mathrm{d}^3 p}{(2 \pi)^3} \frac{1}{\sqrt{2 E_{\boldsymbol{p}}}}\left(a_{\boldsymbol{p}} \mathrm{e}^{\mathrm{i} \boldsymbol{p} \cdot \boldsymbol{x}}+a_{\boldsymbol{p}}^{\dagger} \mathrm{e}^{-\mathrm{i}\boldsymbol{p} \cdot \boldsymbol{x}}\right)

The Hamiltonian of the system, however, is always time independent

H=d3p(2π)3EpapapH = \int \frac{\mathrm{d}^3 p}{(2 \pi)^3} E_\boldsymbol{p} a_\boldsymbol{p}^\dagger a_\boldsymbol{p}

in whichever picture.


Quantization of Vector Field

Free Field

For a free massless vector field, the Lagrangian is

L=14FμνFμν\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}

where FμνμAννAμF^{\mu \nu} \equiv \partial^\mu A^\nu-\partial^\nu A^\mu. The canonical quantization requires equal time commutation relations

[Aμ(x,t),πν(y,t)]=iδμνδ(3)(xy),[Aμ(x,t),Aν(y,t)]=[πμ(x,t),πν(y,t)]=0\left[A^\mu(\boldsymbol{x}, t), \pi_\nu(\boldsymbol{y}, t)\right]=\mathrm{i} \delta^\mu{ }_\nu \delta^{(3)}(\boldsymbol{x}-\boldsymbol{y}), \quad\left[A^\mu(\boldsymbol{x}, t), A^\nu(\boldsymbol{y}, t)\right]=\left[\pi_\mu(\boldsymbol{x}, t), \pi_\nu(\boldsymbol{y}, t)\right]=0

thus we obtain

Aμ(x,t)=d3p(2π)312Epσ=03eμ(p,σ)(bp,σeipx+bp,σeipx)A^\mu(\boldsymbol{x}, t)=\int \frac{\mathrm{d}^3 p}{(2 \pi)^3} \frac{1}{\sqrt{2 E_{\boldsymbol{p}}}} \sum_{\sigma=0}^3 e^\mu(\boldsymbol{p}, \sigma)\left(b_{\boldsymbol{p}, \sigma} \mathrm{e}^{-\mathrm{i} p \cdot x}+b_{\boldsymbol{p}, \sigma}^{\dagger} \mathrm{e}^{\mathrm{i} p \cdot x}\right)

in which eμ(p,σ)e^\mu(\boldsymbol{p}, \sigma) are polarization vectors, depending on the 3-momentum p\boldsymbol{p} , and has another index σ\sigma to describe the polarization state of vector particles. bp,σ,bp,σb_{\boldsymbol{p},\sigma}, b_{\boldsymbol{p}, \sigma}^{\dagger} are creation and annihilation operators for vector field with mode p\boldsymbol{p} and polarization σ\sigma.

cQED Running Wave

In cavity quantum electrodynamics (cavity QED), quantization is performed in an optical cavity with certain quantization volume VV. The Lorentz invariance of the theory is not that emphasized.

For polarized mode in a specific direction ej\boldsymbol{e}_j , the vector potential is

A(r,t)=jAj(r,t)=jej2Vε0ωj{ajei(ωjtkjr)+ajei(ωjtkjr)}\boldsymbol{A}(\boldsymbol{r}, t)=\sum_j \boldsymbol{A}_j(\boldsymbol{r}, t)=\sum_j \boldsymbol{e}_j \sqrt{\frac{\hbar}{2 V \varepsilon_0 \omega_j}}\left\{a_j \mathrm{e}^{-\mathrm{i}\left(\omega_j t-\boldsymbol{k}_j \cdot \boldsymbol{r}\right)}+a_j^\dagger \mathrm{e}^{\mathrm{i}\left(\omega_j t-\boldsymbol{k}_j \cdot \boldsymbol{r}\right)}\right\}

The EM fields are

E(r,t)=jEj(r,t)=ijejEj(r){ajei(ωjtkjr)ajei(ωjtkjr)}\boldsymbol{E}(\boldsymbol{r}, t)=\sum_j \boldsymbol{E}_j(\boldsymbol{r}, t)=\mathrm{i} \sum_j \boldsymbol{e}_j E_j^{(r)}\left\{a_j \mathrm{e}^{-\mathrm{i}\left(\omega_j t-\boldsymbol{k}_j \cdot \boldsymbol{r}\right)}-a_j^\dagger \mathrm{e}^{\mathrm{i}\left(\omega_j t-\boldsymbol{k}_j \cdot \boldsymbol{r}\right)}\right\}

B(r,t)=jBj(r,t)=ij(kjkj×ej)Bj(r){ajei(ωjtkjr)ajei(ωjtkjr)}\boldsymbol{B}(\boldsymbol{r}, t)=\sum_j \boldsymbol{B}_j(\boldsymbol{r}, t)=\mathrm{i} \sum_j\left(\frac{\boldsymbol{k}_j}{k_j} \times \boldsymbol{e}_j\right) B_j^{(r)} \left\{a_j \mathrm{e}^{-\mathrm{i}\left(\omega_j t-\boldsymbol{k}_j \cdot \boldsymbol{r}\right)}-a_j^\dagger \mathrm{e}^{\mathrm{i}\left(\omega_j t-\boldsymbol{k}_j \cdot \boldsymbol{r}\right)}\right\}

where Ej(r)=ωj2Vε0E_j^{(r)} = \sqrt{\frac{\hbar \omega_j}{2V \varepsilon_0}} . The Hamiltonian is

H=jHj=jωj(ajaj+12)H = \sum_j H_j = \sum_j \hbar \omega_j \left(a_j^\dagger a_j +\frac{1}{2} \right)

In Schrodinger picture, we have time independent field operators

ES(r)=jEj(r)=ijejEj(r){ajeikjrajeikjr}\boldsymbol{E}^\mathrm{S}(\boldsymbol{r})=\sum_j \boldsymbol{E}_j(\boldsymbol{r})=\mathrm{i} \sum_j \boldsymbol{e}_j E_j^{(r)}\left\{a_j \mathrm{e}^{\mathrm{i} \boldsymbol{k}_j \cdot \boldsymbol{r}}-a_j^\dagger \mathrm{e}^{-\mathrm{i} \boldsymbol{k}_j \cdot \boldsymbol{r}}\right\}